Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
D1(t) -> 1
D1(constant) -> 0
D1(+2(x, y)) -> +2(D1(x), D1(y))
D1(*2(x, y)) -> +2(*2(y, D1(x)), *2(x, D1(y)))
D1(-2(x, y)) -> -2(D1(x), D1(y))
D1(minus1(x)) -> minus1(D1(x))
D1(div2(x, y)) -> -2(div2(D1(x), y), div2(*2(x, D1(y)), pow2(y, 2)))
D1(ln1(x)) -> div2(D1(x), x)
D1(pow2(x, y)) -> +2(*2(*2(y, pow2(x, -2(y, 1))), D1(x)), *2(*2(pow2(x, y), ln1(x)), D1(y)))
Q is empty.
↳ QTRS
↳ Non-Overlap Check
Q restricted rewrite system:
The TRS R consists of the following rules:
D1(t) -> 1
D1(constant) -> 0
D1(+2(x, y)) -> +2(D1(x), D1(y))
D1(*2(x, y)) -> +2(*2(y, D1(x)), *2(x, D1(y)))
D1(-2(x, y)) -> -2(D1(x), D1(y))
D1(minus1(x)) -> minus1(D1(x))
D1(div2(x, y)) -> -2(div2(D1(x), y), div2(*2(x, D1(y)), pow2(y, 2)))
D1(ln1(x)) -> div2(D1(x), x)
D1(pow2(x, y)) -> +2(*2(*2(y, pow2(x, -2(y, 1))), D1(x)), *2(*2(pow2(x, y), ln1(x)), D1(y)))
Q is empty.
The TRS is non-overlapping. Hence, we can switch to innermost.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
D1(t) -> 1
D1(constant) -> 0
D1(+2(x, y)) -> +2(D1(x), D1(y))
D1(*2(x, y)) -> +2(*2(y, D1(x)), *2(x, D1(y)))
D1(-2(x, y)) -> -2(D1(x), D1(y))
D1(minus1(x)) -> minus1(D1(x))
D1(div2(x, y)) -> -2(div2(D1(x), y), div2(*2(x, D1(y)), pow2(y, 2)))
D1(ln1(x)) -> div2(D1(x), x)
D1(pow2(x, y)) -> +2(*2(*2(y, pow2(x, -2(y, 1))), D1(x)), *2(*2(pow2(x, y), ln1(x)), D1(y)))
The set Q consists of the following terms:
D1(t)
D1(constant)
D1(+2(x0, x1))
D1(*2(x0, x1))
D1(-2(x0, x1))
D1(minus1(x0))
D1(div2(x0, x1))
D1(ln1(x0))
D1(pow2(x0, x1))
Q DP problem:
The TRS P consists of the following rules:
D11(*2(x, y)) -> D11(x)
D11(minus1(x)) -> D11(x)
D11(*2(x, y)) -> D11(y)
D11(+2(x, y)) -> D11(x)
D11(+2(x, y)) -> D11(y)
D11(pow2(x, y)) -> D11(y)
D11(pow2(x, y)) -> D11(x)
D11(ln1(x)) -> D11(x)
D11(div2(x, y)) -> D11(x)
D11(-2(x, y)) -> D11(y)
D11(-2(x, y)) -> D11(x)
D11(div2(x, y)) -> D11(y)
The TRS R consists of the following rules:
D1(t) -> 1
D1(constant) -> 0
D1(+2(x, y)) -> +2(D1(x), D1(y))
D1(*2(x, y)) -> +2(*2(y, D1(x)), *2(x, D1(y)))
D1(-2(x, y)) -> -2(D1(x), D1(y))
D1(minus1(x)) -> minus1(D1(x))
D1(div2(x, y)) -> -2(div2(D1(x), y), div2(*2(x, D1(y)), pow2(y, 2)))
D1(ln1(x)) -> div2(D1(x), x)
D1(pow2(x, y)) -> +2(*2(*2(y, pow2(x, -2(y, 1))), D1(x)), *2(*2(pow2(x, y), ln1(x)), D1(y)))
The set Q consists of the following terms:
D1(t)
D1(constant)
D1(+2(x0, x1))
D1(*2(x0, x1))
D1(-2(x0, x1))
D1(minus1(x0))
D1(div2(x0, x1))
D1(ln1(x0))
D1(pow2(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
D11(*2(x, y)) -> D11(x)
D11(minus1(x)) -> D11(x)
D11(*2(x, y)) -> D11(y)
D11(+2(x, y)) -> D11(x)
D11(+2(x, y)) -> D11(y)
D11(pow2(x, y)) -> D11(y)
D11(pow2(x, y)) -> D11(x)
D11(ln1(x)) -> D11(x)
D11(div2(x, y)) -> D11(x)
D11(-2(x, y)) -> D11(y)
D11(-2(x, y)) -> D11(x)
D11(div2(x, y)) -> D11(y)
The TRS R consists of the following rules:
D1(t) -> 1
D1(constant) -> 0
D1(+2(x, y)) -> +2(D1(x), D1(y))
D1(*2(x, y)) -> +2(*2(y, D1(x)), *2(x, D1(y)))
D1(-2(x, y)) -> -2(D1(x), D1(y))
D1(minus1(x)) -> minus1(D1(x))
D1(div2(x, y)) -> -2(div2(D1(x), y), div2(*2(x, D1(y)), pow2(y, 2)))
D1(ln1(x)) -> div2(D1(x), x)
D1(pow2(x, y)) -> +2(*2(*2(y, pow2(x, -2(y, 1))), D1(x)), *2(*2(pow2(x, y), ln1(x)), D1(y)))
The set Q consists of the following terms:
D1(t)
D1(constant)
D1(+2(x0, x1))
D1(*2(x0, x1))
D1(-2(x0, x1))
D1(minus1(x0))
D1(div2(x0, x1))
D1(ln1(x0))
D1(pow2(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
D11(*2(x, y)) -> D11(x)
D11(*2(x, y)) -> D11(y)
D11(+2(x, y)) -> D11(x)
D11(+2(x, y)) -> D11(y)
D11(pow2(x, y)) -> D11(y)
D11(pow2(x, y)) -> D11(x)
D11(div2(x, y)) -> D11(x)
D11(-2(x, y)) -> D11(y)
D11(-2(x, y)) -> D11(x)
D11(div2(x, y)) -> D11(y)
Used argument filtering: D11(x1) = x1
*2(x1, x2) = *2(x1, x2)
minus1(x1) = x1
+2(x1, x2) = +2(x1, x2)
pow2(x1, x2) = pow2(x1, x2)
ln1(x1) = x1
div2(x1, x2) = div2(x1, x2)
-2(x1, x2) = -2(x1, x2)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
D11(minus1(x)) -> D11(x)
D11(ln1(x)) -> D11(x)
The TRS R consists of the following rules:
D1(t) -> 1
D1(constant) -> 0
D1(+2(x, y)) -> +2(D1(x), D1(y))
D1(*2(x, y)) -> +2(*2(y, D1(x)), *2(x, D1(y)))
D1(-2(x, y)) -> -2(D1(x), D1(y))
D1(minus1(x)) -> minus1(D1(x))
D1(div2(x, y)) -> -2(div2(D1(x), y), div2(*2(x, D1(y)), pow2(y, 2)))
D1(ln1(x)) -> div2(D1(x), x)
D1(pow2(x, y)) -> +2(*2(*2(y, pow2(x, -2(y, 1))), D1(x)), *2(*2(pow2(x, y), ln1(x)), D1(y)))
The set Q consists of the following terms:
D1(t)
D1(constant)
D1(+2(x0, x1))
D1(*2(x0, x1))
D1(-2(x0, x1))
D1(minus1(x0))
D1(div2(x0, x1))
D1(ln1(x0))
D1(pow2(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
D11(ln1(x)) -> D11(x)
Used argument filtering: D11(x1) = x1
minus1(x1) = x1
ln1(x1) = ln1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
D11(minus1(x)) -> D11(x)
The TRS R consists of the following rules:
D1(t) -> 1
D1(constant) -> 0
D1(+2(x, y)) -> +2(D1(x), D1(y))
D1(*2(x, y)) -> +2(*2(y, D1(x)), *2(x, D1(y)))
D1(-2(x, y)) -> -2(D1(x), D1(y))
D1(minus1(x)) -> minus1(D1(x))
D1(div2(x, y)) -> -2(div2(D1(x), y), div2(*2(x, D1(y)), pow2(y, 2)))
D1(ln1(x)) -> div2(D1(x), x)
D1(pow2(x, y)) -> +2(*2(*2(y, pow2(x, -2(y, 1))), D1(x)), *2(*2(pow2(x, y), ln1(x)), D1(y)))
The set Q consists of the following terms:
D1(t)
D1(constant)
D1(+2(x0, x1))
D1(*2(x0, x1))
D1(-2(x0, x1))
D1(minus1(x0))
D1(div2(x0, x1))
D1(ln1(x0))
D1(pow2(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
D11(minus1(x)) -> D11(x)
Used argument filtering: D11(x1) = x1
minus1(x1) = minus1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
D1(t) -> 1
D1(constant) -> 0
D1(+2(x, y)) -> +2(D1(x), D1(y))
D1(*2(x, y)) -> +2(*2(y, D1(x)), *2(x, D1(y)))
D1(-2(x, y)) -> -2(D1(x), D1(y))
D1(minus1(x)) -> minus1(D1(x))
D1(div2(x, y)) -> -2(div2(D1(x), y), div2(*2(x, D1(y)), pow2(y, 2)))
D1(ln1(x)) -> div2(D1(x), x)
D1(pow2(x, y)) -> +2(*2(*2(y, pow2(x, -2(y, 1))), D1(x)), *2(*2(pow2(x, y), ln1(x)), D1(y)))
The set Q consists of the following terms:
D1(t)
D1(constant)
D1(+2(x0, x1))
D1(*2(x0, x1))
D1(-2(x0, x1))
D1(minus1(x0))
D1(div2(x0, x1))
D1(ln1(x0))
D1(pow2(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.